Digital System Design Conntinetional Logic Desilgin Biinerry Ad@lermsunitrector

Objectives:

1. Half Adder.

2. Full Adder.
3. Binary Adder.

4. Binary Subtractor.

5. Binary Adder-Subtractor.

1. Half Adder

Half Adder: is a combinational circuit that performs the addition of two bits, this circuit needs two binary inputs and two binary outputs.

Inputs			Outputs	
X	Y	C	S	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	
Truth table				

The simplified Boolean function from the truth table:

$$
\left\{\begin{array}{ll}
\mathbf{S}=\overline{\mathbf{X}} \mathbf{Y}+\mathbf{X} \overline{\mathbf{Y}} & \mathbf{1} \\
\mathbf{C}=\mathbf{X Y}
\end{array}\right\} \text { (Using sum of product form) }
$$

Where S is the sum and C is the carry.

$$
\left\{\begin{array}{ll}
\mathbf{S}=\mathbf{X} \oplus \mathbf{Y} \\
\mathbf{C}=\mathbf{X Y}
\end{array} \quad 2\right\}(\text { Using XOR and AND Gates) }
$$

Implementation of Half Adder using equation (1)

Implementation of Half Adder using equation (2)
> The implementation of half adder using exclusive- $\mathbf{O R}$ and an AND gates is used to show that two half adders can be used to construct a full adder.
$>$ The inputs to the $X O R$ gate are also the inputs to the AND gate.

2. Full Adder

Full Adder is a combinational circuit that performs the addition of three bits (two significant bits and previous carry).
> It consists of three inputs and two outputs, two inputs are the bits to be added, the third input represents the carry form the previous position.
$>$ The full adder is usually a component in a cascade of adders, which add 8,16 , etc, binary numbers.

Inputs			Outputs	
X	Y	$C_{\text {in }}$	S	$C_{\text {out }}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1
Truth table for the full adder				

$>$ The S output is equal to 1 when only one input is equal to 1 or when all three inputs are equal to 1 .
$>$ The $C_{\text {out }}$ output has a carry 1 if two or three inputs are equal to 1 .
$>$ The Karnaugh maps and the simplified expression are shown in the following figures:

$$
S=\bar{X} \bar{Y} C_{i n}+\bar{X} Y \overline{C_{i n}}+X \bar{Y} \bar{C}_{i n}+X Y C_{\text {in }}
$$

$$
C_{\text {out }}=X Y+X C_{\text {in }}+Y C_{\text {in }}
$$

$$
\left\{\begin{array}{l}
S=\bar{X} \bar{Y} C_{i n}+\bar{X} Y \overline{C_{i n}}+X \bar{Y} \overline{C_{i n}}+X Y C_{i n} \\
C_{\text {out }}=X Y+X C_{i n}+Y C_{i n}
\end{array}\right.
$$

$>$ The logic diagrams for the full adder implemented in sum-of-products form are the following:

$>$ It can also be implemented using two half adders and one OR gate (using XOR gates).

$$
\left\{\begin{array}{l}
S=C_{\text {in }} \oplus(X \oplus Y) \\
C_{\text {out }}=C_{\text {in }} \cdot(X \oplus Y)+X Y
\end{array}\right\}
$$

Proof:
The sum:

$$
\begin{aligned}
\mathbf{S} & =\overline{\mathbf{X}} \overline{\mathbf{Y}} \mathbf{C}_{\mathbf{i n}}+\overline{\mathbf{X}} \mathbf{Y} \overline{\mathbf{C}_{\mathbf{n n}}}+\mathbf{X} \overline{\mathbf{Y}} \overline{\mathbf{C}_{\mathbf{i n}}}+\mathbf{X Y \mathbf { C } _ { \mathbf { i n } }} \\
& =\overline{\mathbf{C}_{\mathbf{i n}}}(\overline{\mathbf{X}} \mathbf{Y}+\mathbf{X} \overline{\mathbf{Y}})+\mathbf{C}_{\mathbf{i n}}(\overline{\mathbf{X}} \overline{\mathbf{Y}}+\mathbf{X Y}) \\
& =\overline{\mathbf{C}_{\mathbf{i n}}}(\overline{\mathbf{X}} \mathbf{Y}+\mathbf{X} \overline{\mathbf{Y}})+\mathbf{C}_{\mathbf{i n}} \overline{(\overline{\mathbf{X}} \mathbf{Y}+\mathbf{X} \overline{\mathbf{Y}})} \\
S & =C_{i n} \oplus(X \oplus Y)
\end{aligned}
$$

The carry output:

$$
\begin{aligned}
C_{\text {out }} & =\overline{\mathbf{X}} \mathbf{Y C} \mathrm{C}_{\mathrm{in}}+\mathbf{X} \overline{\mathbf{Y}} \mathrm{C}_{\mathrm{in}}+\mathbf{X Y C _ { i n }}+\mathbf{X Y} \overline{\mathrm{C}_{\mathrm{in}}} \\
& =\mathrm{C}_{\mathrm{in}}(\overline{\mathbf{X}} \mathbf{Y}+\mathbf{X} \overline{\mathbf{Y}})+\mathbf{X Y}\left(\mathrm{C}_{\mathrm{in}}+\overline{\mathrm{C}_{\mathrm{in}}}\right) \\
C_{\text {out }}= & C_{\text {in }} \cdot(X \oplus Y)+X Y
\end{aligned}
$$

3. Binary Adder (Asynchronous Ripple-Carry Adder)

$>$ A binary adder is a digital circuit that produces the arithmetic sum of two binary numbers.
\rightarrow A binary adder can be constructed with full adders connected in cascade with the output carry form each full adder connected to the input carry of the next full adder in the chain.
$>$ The four-bit adder is a typical example of a standard component .It can be used in many application involving arithmetic operations.

Four-bit Adder (Ripple Carry Adder)
$>$ The input carry to the adder is C_{0} and it ripples through the full adders to the output carry C_{4}.
n-bit binary adder requires n full adders.

