Digital System Design

Lecture 12 Combinational Logic Design

Binary Adder-Subtractor

Objectives:

- 1. Half Adder.
- 2. Full Adder.
- 3. Binary Adder.
- 4. Binary Subtractor.
- 5. Binary Adder-Subtractor.

1. Half Adder

Half Adder: is a combinational circuit that performs the addition of two bits, this circuit needs two binary inputs and two binary outputs.

Inputs		Outputs		The simplified Boolean function from the truth					
	X	Y	С	S	table:				
	0	0	0	0					
	0	1	0	1	S = XY + XY	1 (Using sum of product form)			
	1	0	0	1	$\mathbf{U} = \mathbf{X}\mathbf{Y}$)			
	1	1	1	0	Where S is the	sum and <i>C</i> is the carry.			
$\begin{array}{c} \textbf{Truth table} \\ \{ \begin{matrix} S = X \oplus Y \\ C = XY \end{matrix} \end{matrix}$						2} (Using XOR and AND Gates)			
	X Y				S				
mplementation of Half Adder using equation (1)						Implementation of Half Adder using equation (2)			

- The implementation of half adder using *exclusive-OR* and an *AND* gates is used to show that two half adders can be used to construct a full adder.
- > The inputs to the **XOR** gate are also the inputs to the **AND** gate.

2. Full Adder

Full Adder is a combinational circuit that performs the addition of three bits (two significant bits and previous carry).

- It consists of *three inputs and two outputs*, two inputs are the bits to be added, the third input represents the carry form the previous position.
- The full adder is usually a component in a cascade of adders, which add 8, 16, etc, binary numbers.

	Inpu	ts	Outputs					
X	Y	C _{in}	S	Cout				
0	0	0	0	0				
0	0	1	1	0				
0	1	0	1	0				
0	1	1	0	1				
1	0	0	1	0				
1	0	1	0	1				
1	1	0	0	1				
1	1	1	1	1				
Truth table for the full adder								

> The S output is equal to 1 when only one input is equal to 1 or when all three inputs are equal to 1.

> The C_{out} output has a carry 1 if two or three inputs are equal to 1.

> The Karnaugh maps and the simplified expression are shown in the following figures:

$$\begin{cases} S = \overline{X} \,\overline{Y} C_{in} + \overline{X} Y \overline{C_{in}} + X \overline{Y} \,\overline{C_{in}} + X Y C_{in} \\ C_{out=} XY + X C_{in} + Y C_{in} \end{cases}$$
(Sum of products)

The *logic diagrams* for the full adder implemented in *sum-of-products* form are the following:

It can also be implemented using two half adders and one OR gate (using XOR gates).

$$\begin{cases} S = C_{in} \oplus (X \oplus Y) \\ C_{out} = C_{in} \cdot (X \oplus Y) + XY \end{cases}$$

Proof:

The sum:

$$S = \overline{X} \,\overline{Y} C_{in} + \overline{X} Y \overline{C_{in}} + X \overline{Y} \,\overline{C_{in}} + X Y C_{in}$$
$$= \overline{C_{in}} (\overline{X} Y + X \overline{Y}) + C_{in} (\overline{X} \,\overline{Y} + X Y)$$
$$= \overline{C_{in}} (\overline{X} Y + X \overline{Y}) + C_{in} (\overline{\overline{X} Y + X \overline{Y}})$$

 $S = C_{in} \oplus (X \oplus Y)$

The carry output:

$$C_{out} = \overline{X}YC_{in} + X\overline{Y}C_{in} + XYC_{in} + XY\overline{C_{in}}$$
$$= C_{in}(\overline{X}Y + X\overline{Y}) + XY(C_{in} + \overline{C_{in}})$$
$$C_{out} = C_{in} \cdot (X \oplus Y) + XY$$

3. Binary Adder (Asynchronous Ripple-Carry Adder)

- A binary adder is a digital circuit that produces the *arithmetic sum of two binary numbers*.
- A binary adder can be constructed with *full adders connected in cascade* with the output carry form each full adder connected to the input carry of the next full adder in the chain.
- The *four-bit adder* is a typical example of a *standard component*. It can be used in many application involving arithmetic operations.

- The input carry to the adder is C₀ and it ripples through the full adders to the output carry C₄.
- > n-bit binary adder requires n full adders.