Chapter 3

BINARY ARITHMETIC AND TWO's COMPLEMENT ARITHMETIC

Lesson 3

BINARY MULTIPLICATION AND DIVISION

Outline

- Multiplication: Unsigned Numbers
- Multiplication: Signed Numbers
- Division

Multiplication of 1-bit $\times 1$-bit

- Dot operator represents an AND operation. AND operations.
- $1.1=1$.....(1)
- $1.0=0 \ldots$...(2)
- $0.1=0$.....(3)
- $0.0=0 \ldots$....(4)

Multiplication of n-bit $\times \mathbf{1}$-bit

- Perform AND operation on all n-bits with the multiplying bit
- Multiplication by 1_{b} gives same number as before
Example 1: 1011

$$
\times 1
$$

Using Equations (1) and (2)
Answer is 1011

Multiplication of n-bit $\times 1$-bit

Multiplication by 0_{b} gives all 0 s .

Example 2: 1011

$$
\times 0
$$

Using Equations (1) and (2)
Answer is 0000

Shift left operation by 1-bit

Example 3: 1011

Shift Left

Answer is 0110 .
(Place of each bit moves to left and msb is discarded.)

Shift left operation by 2-bit

Example 3: 1011 Shift Left Twice
Answer is shift once 0110. Shift again 1100

Multiplication of n -bit $\times \mathrm{m}$-bit

Step1: Find P0-Multiple n-bit by rightmost 1-bit
Steps 2 and 3: Find P1— Multiple n-bit by rightmost but 1-bit and shift left once and add with P0 and find S0
Steps 4 and 5: Find P2 - Multiple n-bit by rightmost but 2-bits and shift left 2 times, add by S0. and find S1

Multiplication of n-bit $\times \mathbf{m}$-bit

Continue till all m-bits are multiplied and sum of partial products $\mathrm{P} 0+\mathrm{P} 1+\mathrm{P}_{\mathrm{m}-1}$ is found

Example: multiplicand $=\mathbf{1 0}_{\mathrm{d}}\left(\mathbf{1 0 1 0}_{\mathrm{b}}\right)$ and multiplier $=\mathbf{1 3}_{\mathrm{d}}\left(\mathbf{1 1 0 1}_{\mathrm{b}}\right)$.

Step 1: $\mathrm{P} 0=\mathrm{x} \times \mathrm{x} \times 1010$ Step 2: P1 = x x x 0000_{-}

Step 3 S0 = x x 001010

 Step 4 P2 = x x 1010 _ -
Example: multiplicand $=\mathbf{1 0}_{\mathrm{d}}\left(\mathbf{1 0 1 0}_{\mathrm{b}}\right)$ and multiplier $=\mathbf{1 3}_{\mathrm{d}}\left(\mathbf{1 1 0 1}_{\mathrm{b}}\right)$.

Step 5 S1 = x 0110010 Step 6 P3 = x $1010{ }_{---}$

 Step 7 S2 = 10000010
--...--.......................--

$=10000010=$ Decimal 130 ${ }_{\mathrm{d}}$

Outline

- Multiplication: Unsigned Numbers - Multiplication: Signed Numbers - Division

Signed Numbers

For multiplication use msb as sign bit and remaining bits for a positive number

Signed Multiplication of n-bit $\times \mathbf{m}$-bit

Step1: Find P0- Leave msb and Multiple $n-1$ bits by rightmost 1-bit
Steps 2 and 3: Find P1- Multiple $n-1$ bits by rightmost but 1-bit and shift left once and add with P0 and find S0
Steps 4 and 5: Find P2 - Multiple $n-1$ bits by rightmost but 2-bits and shift left 2 times, add by S0. and find S1

Multiplication of n-bit $\times \mathbf{m}$-bit

Continue till all $(\mathrm{m}-1)$ bits are multiplied and sum $\mathrm{P} 0+\mathrm{P} 1+\mathrm{P}_{\mathrm{m}-2}$ is found
Now find the sign bit msb of the result

- If both $\mathrm{msb}=0 \mathrm{~s}$, then msb of product $=0$
- If $\mathrm{msbs}=1$ and 0 , then msb of product $=1$
- If both $\mathrm{msb}=1 \mathrm{~s}$, then msb of product $=0$

Example: multiplicand $=\mathbf{1 0}_{\mathrm{d}}\left(\mathbf{1 0 1 0}_{\mathrm{b}}\right)$ and multiplier $=\mathbf{1 3}_{\mathrm{d}}\left(\mathbf{1 1 0 1}_{\mathrm{b}}\right)$.

Step 1: $\mathrm{P} 0=\mathrm{x} \times \mathrm{x} \times 1010$ Step 2: P1 = x x x 0000_{-}

Step $3 \mathrm{~S} 0=\mathrm{x} \times 01010$

 Step 4 P2 = x x 1010 _ -
Example: multiplicand $=\mathbf{1 0}_{\mathrm{d}}\left(\mathbf{1 0 1 0}_{\mathrm{b}}\right)$ and multiplier $=\mathbf{1 3}_{\mathrm{d}}\left(\mathbf{1 1 0 1}_{\mathrm{b}}\right)$.

Step 5 S1 = x 0110010 Step 6 P3 = x $1010{ }_{---}$

 Step 7 S2 = 10000010
--...--.......................--

$=10000010=$ Decimal 130 ${ }_{\mathrm{d}}$

Outline

- Multiplication: Unsigned Numbers
- Multiplication: Signed Numbers
- Division

Binary Division

- Binary arithmetic division isby successive subtraction

Division Method

Let dividend by X and divisor be Y .

 When we divide the unsigned format number (integers non fractional numbers)
Division Method

1. Set the initial quotient $=0000$.
2. Check if $\mathrm{X}<\mathrm{Y}$, if yes, then Q is unchanged and $\mathrm{R}=\mathrm{X}$. Stop the process. 3.If $\mathrm{X}>\mathrm{Y}$, increment the quotient. [New Q in first cycle is $=0001$, second cycle it will be 0010.]

Division Method

4. Find X - Y using two's complement arithmetic and get the R .
5. Set $\mathrm{X}=$ R.Repeat steps 2 to 5 till $\mathrm{X}<$ Y.
6. Now Q is the result for the quotient and $\mathrm{R}=$ finally left X is the final remainder

Example $\mathrm{X} \div \mathrm{Y}=0111 \div 0011$

Here $\mathrm{X}>\mathrm{Y}$.
tap 1: $\mathrm{Q}=0000$
Step 2: $\mathrm{X}>\mathrm{Y}$ and so go to next step.
Step 3: $\mathrm{Q}=0001$
Step 4: Find X - Y = $0111-0011=0111+$ $1101=0100 . \mathrm{R}=0100$.
Step 5: $\mathrm{X}=\mathrm{R}=0100$.

Example $\mathrm{X} \div \mathrm{Y}=0111 \div 0011$

Step 6: Repeat steps 2 to 5 . We get $\mathrm{Q}=$ $0001+1=0010$ and $\mathrm{R}=0001$.
Answer is $\mathrm{Q}=0010($ decimal 2$)$ and $\mathrm{R}=$ 0001 (decimal 1) as expected from division of 7 by 3

Division of Signed numbers

- Divide ($n-1$) bits leaving msbs of X and Y
- Now find the sign bit msb of the quotient
- If both $\mathrm{msb}=0 \mathrm{~s}$, then msb of quotient $=0$
- If $\mathrm{msbs}=1$ and 0 , then msb of quotient $=1$
- If both $\mathrm{msb}=1 \mathrm{~s}$, then msb of quotient $=0$

Summary

- Multiplication is found by 1 -bit multiplications, finding partial products, shift left the partial products and find the sum
- Division is by repeated subtraction
- Use signed number in multiplication and division

End of Lesson 2 on BINARY
 MULTIPLICATION AND DIVISION

THANK YOU

